Computer Science > Computer Vision and Pattern Recognition
[Submitted on 6 Apr 2022 (v1), last revised 27 Jun 2022 (this version, v2)]
Title:Learning to Anticipate Future with Dynamic Context Removal
View PDFAbstract:Anticipating future events is an essential feature for intelligent systems and embodied AI. However, compared to the traditional recognition task, the uncertainty of future and reasoning ability requirement make the anticipation task very challenging and far beyond solved. In this filed, previous methods usually care more about the model architecture design or but few attention has been put on how to train an anticipation model with a proper learning policy. To this end, in this work, we propose a novel training scheme called Dynamic Context Removal (DCR), which dynamically schedules the visibility of observed future in the learning procedure. It follows the human-like curriculum learning process, i.e., gradually removing the event context to increase the anticipation difficulty till satisfying the final anticipation target. Our learning scheme is plug-and-play and easy to integrate any reasoning model including transformer and LSTM, with advantages in both effectiveness and efficiency. In extensive experiments, the proposed method achieves state-of-the-art on four widely-used benchmarks. Our code and models are publicly released at this https URL.
Submission history
From: Xinyu Xu [view email][v1] Wed, 6 Apr 2022 05:24:28 UTC (5,417 KB)
[v2] Mon, 27 Jun 2022 15:28:36 UTC (5,417 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.