Computer Science > Information Retrieval
[Submitted on 7 Apr 2022]
Title:Introducing a Framework and a Decision Protocol to Calibrate Recommender Systems
View PDFAbstract:Recommender Systems use the user's profile to generate a recommendation list with unknown items to a target user. Although the primary goal of traditional recommendation systems is to deliver the most relevant items, such an effort unintentionally can cause collateral effects including low diversity and unbalanced genres or categories, benefiting particular groups of categories. This paper proposes an approach to create recommendation lists with a calibrated balance of genres, avoiding disproportion between the user's profile interests and the recommendation list. The calibrated recommendations consider concomitantly the relevance and the divergence between the genres distributions extracted from the user's preference and the recommendation list. The main claim is that calibration can contribute positively to generate fairer recommendations. In particular, we propose a new trade-off equation, which considers the users' bias to provide a recommendation list that seeks for the users' tendencies. Moreover, we propose a conceptual framework and a decision protocol to generate more than one thousand combinations of calibrated systems in order to find the best combination. We compare our approach against state-of-the-art approaches using multiple domain datasets, which are analyzed by rank and calibration metrics. The results indicate that the trade-off, which considers the users' bias, produces positive effects on the precision and to the fairness, thus generating recommendation lists that respect the genre distribution and, through the decision protocol, we also found the best system for each dataset.
Submission history
From: Diego Corrêa Da Silva [view email][v1] Thu, 7 Apr 2022 19:30:55 UTC (11,800 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.