Computer Science > Computer Vision and Pattern Recognition
[Submitted on 8 Apr 2022]
Title:A Novel Intrinsic Image Decomposition Method to Recover Albedo for Aerial Images in Photogrammetry Processing
View PDFAbstract:Recovering surface albedos from photogrammetric images for realistic rendering and synthetic environments can greatly facilitate its downstream applications in VR/AR/MR and digital twins. The textured 3D models from standard photogrammetric pipelines are suboptimal to these applications because these textures are directly derived from images, which intrinsically embedded the spatially and temporally variant environmental lighting information, such as the sun illumination, direction, causing different looks of the surface, making such models less realistic when used in 3D rendering under synthetic lightings. On the other hand, since albedo images are less variable by environmental lighting, it can, in turn, benefit basic photogrammetric processing. In this paper, we attack the problem of albedo recovery for aerial images for the photogrammetric process and demonstrate the benefit of albedo recovery for photogrammetry data processing through enhanced feature matching and dense matching. To this end, we proposed an image formation model with respect to outdoor aerial imagery under natural illumination conditions; we then, derived the inverse model to estimate the albedo by utilizing the typical photogrammetric products as an initial approximation of the geometry. The estimated albedo images are tested in intrinsic image decomposition, relighting, feature matching, and dense matching/point cloud generation results. Both synthetic and real-world experiments have demonstrated that our method outperforms existing methods and can enhance photogrammetric processing.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.