Computer Science > Machine Learning
[Submitted on 8 Apr 2022]
Title:Approximate discounting-free policy evaluation from transient and recurrent states
View PDFAbstract:In order to distinguish policies that prescribe good from bad actions in transient states, we need to evaluate the so-called bias of a policy from transient states. However, we observe that most (if not all) works in approximate discounting-free policy evaluation thus far are developed for estimating the bias solely from recurrent states. We therefore propose a system of approximators for the bias (specifically, its relative value) from transient and recurrent states. Its key ingredient is a seminorm LSTD (least-squares temporal difference), for which we derive its minimizer expression that enables approximation by sampling required in model-free reinforcement learning. This seminorm LSTD also facilitates the formulation of a general unifying procedure for LSTD-based policy value approximators. Experimental results validate the effectiveness of our proposed method.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.