Computer Science > Neural and Evolutionary Computing
[Submitted on 12 Apr 2022]
Title:Hard Problems are Easier for Success-based Parameter Control
View PDFAbstract:Recent works showed that simple success-based rules for self-adjusting parameters in evolutionary algorithms (EAs) can match or outperform the best fixed parameters on discrete problems. Non-elitism in a (1,$\lambda$) EA combined with a self-adjusting offspring population size $\lambda$ outperforms common EAs on the multimodal Cliff problem. However, it was shown that this only holds if the success rate $s$ that governs self-adjustment is small enough. Otherwise, even on OneMax, the self-adjusting (1,$\lambda$) EA stagnates on an easy slope, where frequent successes drive down the offspring population size. We show that self-adjustment works as intended in the absence of easy slopes. We define everywhere hard functions, for which successes are never easy to find and show that the self-adjusting (1,$\lambda$) EA is robust with respect to the choice of success rates $s$. We give a general fitness-level upper bound on the number of evaluations and show that the expected number of generations is at most $O(d + \log(1/p_{\min}))$ where $d$ is the number of non-optimal fitness values and $p_{\min}$ is the smallest probability of finding an improvement from a non-optimal search point. We discuss implications for the everywhere hard function LeadingOnes and a new class OneMaxBlocks of everywhere hard functions with tunable difficulty.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.