Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 13 Apr 2022 (v1), last revised 28 Jun 2022 (this version, v2)]
Title:BEHM-GAN: Bandwidth Extension of Historical Music using Generative Adversarial Networks
View PDFAbstract:Audio bandwidth extension aims to expand the spectrum of narrow-band audio signals. Although this topic has been broadly studied during recent years, the particular problem of extending the bandwidth of historical music recordings remains an open challenge. This paper proposes BEHM-GAN, a model based on generative adversarial networks, as a practical solution to this problem. The proposed method works with the complex spectrogram representation of audio and, thanks to a dedicated regularization strategy, can effectively extend the bandwidth of out-of-distribution real historical recordings. The BEHM-GAN is designed to be applied as a second step after denoising the recording to suppress any additive disturbances, such as clicks and background noise. We train and evaluate the method using solo piano classical music. The proposed method outperforms the compared baselines in both objective and subjective experiments. The results of a formal blind listening test show that BEHM-GAN significantly increases the perceptual sound quality in early-20th-century gramophone recordings. For several items, there is a substantial improvement in the mean opinion score after enhancing historical recordings with the proposed bandwidth-extension algorithm. This study represents a relevant step toward data-driven music restoration in real-world scenarios.
Submission history
From: Eloi Moliner [view email][v1] Wed, 13 Apr 2022 15:55:25 UTC (11,110 KB)
[v2] Tue, 28 Jun 2022 08:20:31 UTC (3,322 KB)
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.