Computer Science > Computation and Language
[Submitted on 15 Apr 2022 (v1), last revised 1 May 2022 (this version, v2)]
Title:Learning to Adapt Domain Shifts of Moral Values via Instance Weighting
View PDFAbstract:Classifying moral values in user-generated text from social media is critical in understanding community cultures and interpreting user behaviors of social movements. Moral values and language usage can change across the social movements; however, text classifiers are usually trained in source domains of existing social movements and tested in target domains of new social issues without considering the variations. In this study, we examine domain shifts of moral values and language usage, quantify the effects of domain shifts on the morality classification task, and propose a neural adaptation framework via instance weighting to improve cross-domain classification tasks. The quantification analysis suggests a strong correlation between morality shifts, language usage, and classification performance. We evaluate the neural adaptation framework on a public Twitter data across 7 social movements and gain classification improvements up to 12.1\%. Finally, we release a new data of the COVID-19 vaccine labeled with moral values and evaluate our approach on the new target domain. For the case study of the COVID-19 vaccine, our adaptation framework achieves up to 5.26\% improvements over neural baselines.
Submission history
From: Xiaolei Huang [view email][v1] Fri, 15 Apr 2022 18:15:41 UTC (226 KB)
[v2] Sun, 1 May 2022 03:55:24 UTC (298 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.