Computer Science > Data Structures and Algorithms
[Submitted on 17 Apr 2022 (v1), last revised 22 Aug 2022 (this version, v3)]
Title:On representing the degree sequences of sublogarithmic-degree Wheeler graphs
View PDFAbstract:We show how to store a searchable partial-sums data structure with constant query time for a static sequence $S$ of $n$ positive integers in $o \left( \frac{\log n}{(\log \log n)^2} \right)$, in $n H_k (S) + o (n)$ bits for $k \in o \left( \frac{\log n}{(\log \log n)^2} \right)$. It follows that if a Wheeler graph on $n$ vertices has maximum degree in $o \left( \frac{\log n}{(\log \log n)^2} \right)$, then we can store its in- and out-degree sequences $\Din$ and $\Dout$ in $n H_k (\Din) + o (n)$ and $n H_k (\Dout) + o (n)$ bits, for $k \in o \left( \frac{\log n}{(\log \log n)^2} \right)$, such that querying them for pattern matching in the graph takes constant time.
Submission history
From: Travis Gagie [view email][v1] Sun, 17 Apr 2022 03:33:43 UTC (3 KB)
[v2] Sun, 12 Jun 2022 19:45:42 UTC (63 KB)
[v3] Mon, 22 Aug 2022 06:23:07 UTC (63 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.