Mathematics > Combinatorics
[Submitted on 21 Apr 2022 (v1), last revised 15 May 2023 (this version, v3)]
Title:On the location of chromatic zeros of series-parallel graphs
View PDFAbstract:In this paper we consider the zeros of the chromatic polynomial of series-parallel graphs. Complementing a result of Sokal, showing density outside the disk $|q-1|\leq1$, we show density of these zeros in the half plane $\Re(q)>3/2$ and we show there exists an open region $U$ containing the interval $(0,32/27)$ such that $U\setminus\{1\}$ does not contain zeros of the chromatic polynomial of series-parallel graphs.
We also disprove a conjecture of Sokal by showing that for each large enough integer $\Delta$ there exists a series-parallel graph for which all vertices but one have degree at most $\Delta$ and whose chromatic polynomial has a zero with real part exceeding $\Delta$.
Submission history
From: Guus Regts [view email][v1] Thu, 21 Apr 2022 11:49:17 UTC (98 KB)
[v2] Thu, 8 Sep 2022 13:16:00 UTC (101 KB)
[v3] Mon, 15 May 2023 09:09:00 UTC (96 KB)
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.