Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 22 Apr 2022]
Title:Efficient Pipeline Planning for Expedited Distributed DNN Training
View PDFAbstract:To train modern large DNN models, pipeline parallelism has recently emerged, which distributes the model across GPUs and enables different devices to process different microbatches in pipeline. Earlier pipeline designs allow multiple versions of model parameters to co-exist (similar to asynchronous training), and cannot ensure the same model convergence and accuracy performance as without pipelining. Synchronous pipelining has recently been proposed which ensures model performance by enforcing a synchronization barrier between training iterations. Nonetheless, the synchronization barrier requires waiting for gradient aggregation from all microbatches and thus delays the training progress. Optimized pipeline planning is needed to minimize such wait and hence the training time, which has not been well studied in the literature. This paper designs efficient, near-optimal algorithms for expediting synchronous pipeline-parallel training of modern large DNNs over arbitrary inter-GPU connectivity. Our algorithm framework comprises two components: a pipeline partition and device mapping algorithm, and a pipeline scheduler that decides processing order of microbatches over the partitions, which together minimize the per-iteration training time. We conduct thorough theoretical analysis, extensive testbed experiments and trace-driven simulation, and demonstrate our scheme can accelerate training up to 157% compared with state-of-the-art designs.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.