Computer Science > Computation and Language
[Submitted on 22 Apr 2022]
Title:Emergent Communication for Understanding Human Language Evolution: What's Missing?
View PDFAbstract:Emergent communication protocols among humans and artificial neural network agents do not yet share the same properties and show some critical mismatches in results. We describe three important phenomena with respect to the emergence and benefits of compositionality: ease-of-learning, generalization, and group size effects (i.e., larger groups create more systematic languages). The latter two are not fully replicated with neural agents, which hinders the use of neural emergent communication for language evolution research. We argue that one possible reason for these mismatches is that key cognitive and communicative constraints of humans are not yet integrated. Specifically, in humans, memory constraints and the alternation between the roles of speaker and listener underlie the emergence of linguistic structure, yet these constraints are typically absent in neural simulations. We suggest that introducing such communicative and cognitive constraints would promote more linguistically plausible behaviors with neural agents.
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.