Mathematics > Probability
[Submitted on 25 Apr 2022]
Title:Smoothed Analysis of the Komlós Conjecture
View PDFAbstract:The well-known Komlós conjecture states that given $n$ vectors in $\mathbb{R}^d$ with Euclidean norm at most one, there always exists a $\pm 1$ coloring such that the $\ell_{\infty}$ norm of the signed-sum vector is a constant independent of $n$ and $d$. We prove this conjecture in a smoothed analysis setting where the vectors are perturbed by adding a small Gaussian noise and when the number of vectors $n =\omega(d\log d)$. The dependence of $n$ on $d$ is the best possible even in a completely random setting.
Our proof relies on a weighted second moment method, where instead of considering uniformly randomly colorings we apply the second moment method on an implicit distribution on colorings obtained by applying the Gram-Schmidt walk algorithm to a suitable set of vectors. The main technical idea is to use various properties of these colorings, including subgaussianity, to control the second moment.
Current browse context:
math.PR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.