Mathematics > Numerical Analysis
[Submitted on 25 Apr 2022 (v1), last revised 9 Dec 2022 (this version, v3)]
Title:Structure-preserving numerical method for Maxwell-Ampère Nernst-Planck model
View PDFAbstract:Charge dynamics play essential role in many practical applications such as semiconductors, electrochemical devices and transmembrane ion channels. A Maxwell-Ampère Nernst-Planck (MANP) model that describes charge dynamics via concentrations and the electric displacement is able to take effects beyond mean-field approximations into account. To obtain physically faithful numerical solutions, we develop a structure-preserving numerical method for the MANP model whose solution has several physical properties of importance. By the Slotboom transform with entropic-mean approximations, a positivity preserving scheme with Scharfetter-Gummel fluxes is derived for the generalized Nernst-Planck equations. To deal with the curl-free constraint, the dielectric displacement from the Maxwell-Ampère equation is further updated with a local relaxation algorithm of linear computational complexity. We prove that the proposed numerical method unconditionally preserves the mass conservation and the solution positivity at the discrete level, and satisfies the discrete energy dissipation law with a time-step restriction. Numerical experiments verify that our numerical method has expected accuracy and structure-preserving properties. Applications to ion transport with large convection, arising from boundary-layer electric field and Born solvation interactions, further demonstrate that the MANP formulation with the proposed numerical scheme has attractive performance and can effectively describe charge dynamics with large convection of high numerical cell Péclet numbers.
Submission history
From: Qian Yin [view email][v1] Mon, 25 Apr 2022 16:00:59 UTC (1,383 KB)
[v2] Sat, 12 Nov 2022 03:36:01 UTC (6,875 KB)
[v3] Fri, 9 Dec 2022 04:00:02 UTC (1,879 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.