Computer Science > Computation and Language
[Submitted on 25 Apr 2022]
Title:Super-Prompting: Utilizing Model-Independent Contextual Data to Reduce Data Annotation Required in Visual Commonsense Tasks
View PDFAbstract:Pre-trained language models have shown excellent results in few-shot learning scenarios using in-context learning. Although it is impressive, the size of language models can be prohibitive to make them usable in on-device applications, such as sensors or smartphones. With smaller language models, task-specific data annotation is needed to fine-tune the language model for a specific purpose. However, data annotation can have a substantial financial and time burden for small research groups, startups, and even companies. In this paper, we analyze different prompt-based fine-tuning techniques to improve results on both language and multimodal causal transformer models. To evaluate our results, we use a dataset focusing on visual commonsense reasoning in time. Our results show that by simple model-agnostic prompt-based fine-tuning, comparable results can be reached by only using 35%-40% of the fine-tuning training dataset. The proposed approaches result in significant time and financial savings. As the proposed methods make minimal architectural assumptions, other researchers can use the results in their transformer models with minimal adaptations. We plan to release the source code freely to make it easier for the community to use and contribute to our work.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.