Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 28 Apr 2022 (v1), last revised 2 Jan 2023 (this version, v2)]
Title:FuncPipe: A Pipelined Serverless Framework for Fast and Cost-efficient Training of Deep Learning Models
View PDFAbstract:Training deep learning (DL) models in the cloud has become a norm. With the emergence of serverless computing and its benefits of true pay-as-you-go pricing and scalability, systems researchers have recently started to provide support for serverless-based training. However, the ability to train DL models on serverless platforms is hindered by the resource limitations of today's serverless infrastructure and DL models' explosive requirement for memory and bandwidth. This paper describes FuncPipe, a novel pipelined training framework specifically designed for serverless platforms that enable fast and low-cost training of DL models. FuncPipe is designed with the key insight that model partitioning can be leveraged to bridge both memory and bandwidth gaps between the capacity of serverless functions and the requirement of DL training. Conceptually simple, we have to answer several design questions, including how to partition the model, configure each serverless function, and exploit each function's uplink/downlink bandwidth. In particular, we tailor a micro-batch scheduling policy for the serverless environment, which serves as the basis for the subsequent optimization. Our Mixed-Integer Quadratic Programming formulation automatically and simultaneously configures serverless resources and partitions models to fit within the resource constraints. Lastly, we improve the bandwidth efficiency of storage-based synchronization with a novel pipelined scatter-reduce algorithm. We implement FuncPipe on two popular cloud serverless platforms and show that it achieves 7%-77% cost savings and 1.3X-2.2X speedup compared to state-of-the-art serverless-based frameworks.
Submission history
From: Yunzhuo Liu [view email][v1] Thu, 28 Apr 2022 15:23:43 UTC (3,534 KB)
[v2] Mon, 2 Jan 2023 07:38:11 UTC (10,033 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.