Computer Science > Machine Learning
[Submitted on 28 Apr 2022 (v1), last revised 17 May 2024 (this version, v2)]
Title:Schrödinger's FP: Dynamic Adaptation of Floating-Point Containers for Deep Learning Training
View PDF HTML (experimental)Abstract:The transfer of tensors from/to memory during neural network training dominates time and energy. To improve energy efficiency and performance, research has been exploring ways to use narrower data representations. So far, these attempts relied on user-directed trial-and-error to achieve convergence. We present methods that relieve users from this responsibility. Our methods dynamically adjust the size and format of the floating-point containers used for activations and weights during training, achieving adaptivity across three dimensions: i) which datatype to use, ii) on which tensor, and iii) how it changes over time. The different meanings and distributions of exponent and mantissas lead us to tailored approaches for each. We present two lossy pairs of methods to eliminate as many mantissa and exponent bits as possible without affecting accuracy. Quantum Mantissa and Quantum Exponent are machine learning compression methods that tap into the gradient descent algorithm to learn the minimal mantissa and exponent bitlengths on a per-layer granularity. They automatically learn that many tensors can use just 1 or 2 mantissa bits and 3 or 4 exponent bits. Overall, the two machine learning methods reduce the footprint by $4.74\times$. Alternatively, BitWave observes changes in the loss function during training to adjust mantissa and exponent bitlengths network-wide, yielding a $3.19\times$ reduction in footprint. Finally, we present an optional method, Gecko, to exploit the naturally emerging, lop-sided exponent distribution to losslessly compress resulting exponents from Quantum Exponent or BitWave and, on average, improve compression rates to $5.64\times$ and $4.56\times$.
Submission history
From: Miloš Nikolić [view email][v1] Thu, 28 Apr 2022 17:30:08 UTC (1,574 KB)
[v2] Fri, 17 May 2024 02:59:24 UTC (10,514 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.