Computer Science > Networking and Internet Architecture
[Submitted on 19 Apr 2022]
Title:Network Topology Optimization via Deep Reinforcement Learning
View PDFAbstract:Topology impacts important network performance metrics, including link utilization, throughput and latency, and is of central importance to network operators. However, due to the combinatorial nature of network topology, it is extremely difficult to obtain an optimal solution, especially since topology planning in networks also often comes with management-specific constraints. As a result, local optimization with hand-tuned heuristic methods from human experts are often adopted in practice. Yet, heuristic methods cannot cover the global topology design space while taking into account constraints, and cannot guarantee to find good solutions.
In this paper, we propose a novel deep reinforcement learning (DRL) algorithm, called Advantage Actor Critic-Graph Searching (A2C-GS), for network topology optimization. A2C-GS consists of three novel components, including a verifier to validate the correctness of a generated network topology, a graph neural network (GNN) to efficiently approximate topology rating, and a DRL actor layer to conduct a topology search. A2C-GS can efficiently search over large topology space and output topology with satisfying performance. We conduct a case study based on a real network scenario, and our experimental results demonstrate the superior performance of A2C-GS in terms of both efficiency and performance.
Current browse context:
cs.NI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.