Computer Science > Artificial Intelligence
[Submitted on 7 Jun 2022]
Title:A new Hyper-heuristic based on Adaptive Simulated Annealing and Reinforcement Learning for the Capacitated Electric Vehicle Routing Problem
View PDFAbstract:Electric vehicles (EVs) have been adopted in urban areas to reduce environmental pollution and global warming as a result of the increasing number of freight vehicles. However, there are still deficiencies in routing the trajectories of last-mile logistics that continue to impact social and economic sustainability. For that reason, in this paper, a hyper-heuristic (HH) approach called Hyper-heuristic Adaptive Simulated Annealing with Reinforcement Learning (HHASA$_{RL}$) is proposed. It is composed of a multi-armed bandit method and the self-adaptive Simulated Annealing (SA) metaheuristic algorithm for solving the problem called Capacitated Electric Vehicle Routing Problem (CEVRP). Due to the limited number of charging stations and the travel range of EVs, the EVs must require battery recharging moments in advance and reduce travel times and costs. The HH implemented improves multiple minimum best-known solutions and obtains the best mean values for some high-dimensional instances for the proposed benchmark for the IEEE WCCI2020 competition.
Submission history
From: Erick Rodriguez Esparza PhD [view email][v1] Tue, 7 Jun 2022 11:10:38 UTC (4,256 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.