Mathematics > Combinatorics
[Submitted on 7 Jun 2022 (v1), last revised 18 Jul 2024 (this version, v2)]
Title:ABC(T)-graphs: an axiomatic characterization of the median procedure in graphs with connected and G$^2$-connected medians
View PDF HTML (experimental)Abstract:The median function is a location/consensus function that maps any profile $\pi$ (a finite multiset of vertices) to the set of vertices that minimize the distance sum to vertices from $\pi$. The median function satisfies several simple axioms: Anonymity (A), Betweeness (B), and Consistency (C). McMorris, Mulder, Novick and Powers (2015) defined the ABC-problem for consensus functions on graphs as the problem of characterizing the graphs (called, ABC-graphs) for which the unique consensus function satisfying the axioms (A), (B), and (C) is the median function.
In this paper, we show that modular graphs with $G^2$-connected medians (in particular, bipartite Helly graphs) are ABC-graphs. On the other hand, the addition of some simple local axioms satisfied by the median function in all graphs (axioms (T), and (T$_2$)) enables us to show that all graphs with connected median (comprising Helly graphs, median graphs, basis graphs of matroids and even $\Delta$-matroids) are ABCT-graphs and that benzenoid graphs are ABCT$_2$-graphs. McMorris et al (2015) proved that the graphs satisfying the pairing property (called the intersecting-interval property in their paper) are ABC-graphs. We prove that graphs with the pairing property constitute a proper subclass of bipartite Helly graphs and we discuss the complexity status of the recognition problem of such graphs.
Submission history
From: Jérémie Chalopin [view email][v1] Tue, 7 Jun 2022 21:11:32 UTC (102 KB)
[v2] Thu, 18 Jul 2024 08:59:48 UTC (103 KB)
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.