Electrical Engineering and Systems Science > Signal Processing
[Submitted on 25 May 2022]
Title:Topological Simplification of Signals for Inference and Approximate Reconstruction
View PDFAbstract:As Internet of Things (IoT) devices become both cheaper and more powerful, researchers are increasingly finding solutions to their scientific curiosities both financially and computationally feasible. When operating with restricted power or communications budgets, however, devices can only send highly-compressed data. Such circumstances are common for devices placed away from electric grids that can only communicate via satellite, a situation particularly plausible for environmental sensor networks. These restrictions can be further complicated by potential variability in the communications budget, for example a solar-powered device needing to expend less energy when transmitting data on a cloudy day. We propose a novel, topology-based, lossy compression method well-equipped for these restrictive yet variable circumstances. This technique, Topological Signal Compression, allows sending compressed signals that utilize the entirety of a variable communications budget. To demonstrate our algorithm's capabilities, we perform entropy calculations as well as a classification exercise on increasingly topologically simplified signals from the Free-Spoken Digit Dataset and explore the stability of the resulting performance against common baselines.
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.