Statistics > Machine Learning
[Submitted on 15 Jun 2022 (v1), last revised 5 Apr 2023 (this version, v2)]
Title:Rethinking Initialization of the Sinkhorn Algorithm
View PDFAbstract:While the optimal transport (OT) problem was originally formulated as a linear program, the addition of entropic regularization has proven beneficial both computationally and statistically, for many applications. The Sinkhorn fixed-point algorithm is the most popular approach to solve this regularized problem, and, as a result, multiple attempts have been made to reduce its runtime using, e.g., annealing in the regularization parameter, momentum or acceleration. The premise of this work is that initialization of the Sinkhorn algorithm has received comparatively little attention, possibly due to two preconceptions: since the regularized OT problem is convex, it may not be worth crafting a good initialization, since any is guaranteed to work; secondly, because the outputs of the Sinkhorn algorithm are often unrolled in end-to-end pipelines, a data-dependent initialization would bias Jacobian computations. We challenge this conventional wisdom, and show that data-dependent initializers result in dramatic speed-ups, with no effect on differentiability as long as implicit differentiation is used. Our initializations rely on closed-forms for exact or approximate OT solutions that are known in the 1D, Gaussian or GMM settings. They can be used with minimal tuning, and result in consistent speed-ups for a wide variety of OT problems.
Submission history
From: James Thornton Mr [view email][v1] Wed, 15 Jun 2022 16:23:03 UTC (3,894 KB)
[v2] Wed, 5 Apr 2023 08:32:20 UTC (4,907 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.