Computer Science > Machine Learning
[Submitted on 19 Jun 2022]
Title:Artificial intelligence system based on multi-value classification of fully connected neural network for construction management
View PDFAbstract:This study is devoted to solving the problem to determine the professional adaptive capabilities of construction management staff using artificial intelligence this http URL is proposed Fully Connected Feed-Forward Neural Network architecture and performed empirical modeling to create a Data Set. Model of artificial intelligence system allows evaluating the processes in an Fully Connected Feed-Forward Neural Network during the execution of multi-value classification of professional areas. A method has been developed for the training process of a machine learning model, which reflects the internal connections between the components of an artificial intelligence system that allow it to learn from training data. To train the neural network, a data set of 35 input parameters and 29 output parameters was used; the amount of data in the set is 936 data lines. Neural network training occurred in the proportion of 10% and 90%, respectively. Results of this study research can be used to further improve the knowledge and skills necessary for successful professional realization.
Submission history
From: Tetyana Honcharenko [view email][v1] Sun, 19 Jun 2022 21:10:38 UTC (1,036 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.