Computer Science > Computer Vision and Pattern Recognition
[Submitted on 24 Jun 2022]
Title:The Second Place Solution for The 4th Large-scale Video Object Segmentation Challenge--Track 3: Referring Video Object Segmentation
View PDFAbstract:The referring video object segmentation task (RVOS) aims to segment object instances in a given video referred by a language expression in all video frames. Due to the requirement of understanding cross-modal semantics within individual instances, this task is more challenging than the traditional semi-supervised video object segmentation where the ground truth object masks in the first frame are given. With the great achievement of Transformer in object detection and object segmentation, RVOS has been made remarkable progress where ReferFormer achieved the state-of-the-art performance. In this work, based on the strong baseline framework--ReferFormer, we propose several tricks to boost further, including cyclical learning rates, semi-supervised approach, and test-time augmentation inference. The improved ReferFormer ranks 2nd place on CVPR2022 Referring Youtube-VOS Challenge.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.