Computer Science > Social and Information Networks
[Submitted on 26 Jun 2022 (v1), last revised 4 Apr 2023 (this version, v3)]
Title:Are We All in a Truman Show? Spotting Instagram Crowdturfing through Self-Training
View PDFAbstract:Influencer Marketing generated $16 billion in 2022. Usually, the more popular influencers are paid more for their collaborations. Thus, many services were created to boost profiles' popularity metrics through bots or fake accounts. However, real people recently started participating in such boosting activities using their real accounts for monetary rewards, generating ungenuine content that is extremely difficult to detect. To date, no works have attempted to detect this new phenomenon, known as crowdturfing (CT), on Instagram.
In this work, we propose the first Instagram CT engagement detector. Our algorithm leverages profiles' characteristics through semi-supervised learning to spot accounts involved in CT activities. Compared to the supervised approaches used so far to identify fake accounts, semi-supervised models can exploit huge quantities of unlabeled data to increase performance. We purchased and studied 1293 CT profiles from 11 providers to build our self-training classifier, which reached 95\% F1-score. We tested our model in the wild by detecting and analyzing CT engagement from 20 mega-influencers (i.e., with more than one million followers), and discovered that more than 20% was artificial. We analyzed the CT profiles and comments, showing that it is difficult to detect these activities based solely on their generated content.
Submission history
From: Pier Paolo Tricomi [view email][v1] Sun, 26 Jun 2022 15:32:31 UTC (1,056 KB)
[v2] Sat, 14 Jan 2023 13:33:28 UTC (1,541 KB)
[v3] Tue, 4 Apr 2023 21:35:23 UTC (2,289 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.