Computer Science > Artificial Intelligence
[Submitted on 28 Jun 2022 (v1), last revised 12 Aug 2022 (this version, v2)]
Title:Towards a Grounded Theory of Causation for Embodied AI
View PDFAbstract:There exist well-developed frameworks for causal modelling, but these require rather a lot of human domain expertise to define causal variables and perform interventions. In order to enable autonomous agents to learn abstract causal models through interactive experience, the existing theoretical foundations need to be extended and clarified. Existing frameworks give no guidance regarding variable choice / representation, and more importantly, give no indication as to which behaviour policies or physical transformations of state space shall count as interventions. The framework sketched in this paper describes actions as transformations of state space, for instance induced by an agent running a policy. This makes it possible to describe in a uniform way both transformations of the micro-state space and abstract models thereof, and say when the latter is veridical / grounded / natural. We then introduce (causal) variables, define a mechanism as an invariant predictor, and say when an action can be viewed as a ``surgical intervention'', thus bringing the objective of causal representation \& intervention skill learning into clearer focus.
Submission history
From: Taco Cohen [view email][v1] Tue, 28 Jun 2022 12:56:43 UTC (62 KB)
[v2] Fri, 12 Aug 2022 13:30:26 UTC (63 KB)
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.