Computer Science > Cryptography and Security
[Submitted on 28 Jun 2022]
Title:Reasoning about Moving Target Defense in Attack Modeling Formalisms
View PDFAbstract:Since 2009, Moving Target Defense (MTD) has become a new paradigm of defensive mechanism that frequently changes the state of the target system to confuse the attacker. This frequent change is costly and leads to a trade-off between misleading the attacker and disrupting the quality of service. Optimizing the MTD activation frequency is necessary to develop this defense mechanism when facing realistic, multi-step attack scenarios. Attack modeling formalisms based on DAG are prominently used to specify these scenarios. Our contribution is a new DAG-based formalism for MTDs and its translation into a Price Timed Markov Decision Process to find the best activation frequencies against the attacker's time/cost-optimal strategies. For the first time, MTD activation frequencies are analyzed in a state-of-the-art DAG-based representation. Moreover, this is the first paper that considers the specificity of MTDs in the automatic analysis of attack modeling formalisms. Finally, we present some experimental results using Uppaal Stratego to demonstrate its applicability and relevance.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.