Electrical Engineering and Systems Science > Systems and Control
[Submitted on 27 Aug 2022]
Title:Impact of Loss Model Selection on Power Semiconductor Lifetime Prediction in Electric Vehicles
View PDFAbstract:Power loss estimation is an indispensable procedure to conduct lifetime prediction for power semiconductor device. The previous studies successfully perform steady-state power loss estimation for different applications, but which may be limited for the electric vehicles (EVs) with high dynamics. Based on two EV standard driving cycle profiles, this paper gives a comparative study of power loss estimation models with two different time resolutions, i.e., the output period average and the switching period average. The correspondingly estimated power losses, thermal profiles, and lifetime clearly pointed out that the widely applied power loss model with the output period average is limited for EV applications, in particular for the highly dynamic driving cycle. The difference in the predicted lifetime can be up to 300 times due to the unreasonable choice the loss model, which calls for the industry attention on the differences of the EVs and the importance of loss model selection in lifetime prediction.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.