Computer Science > Social and Information Networks
[Submitted on 28 Aug 2022]
Title:Opinion Leader Detection in Online Social Networks Based on Output and Input Links
View PDFAbstract:The understanding of how users in a network update their opinions based on their neighbours opinions has attracted a great deal of interest in the field of network science, and a growing body of literature recognises the significance of this issue. In this research paper, we propose a new dynamic model of opinion formation in directed networks. In this model, the opinion of each node is updated as the weighted average of its neighbours opinions, where the weights represent social influence. We define a new centrality measure as a social influence metric based on both influence and conformity. We measure this new approach using two opinion formation models: (i) the Degroot model and (ii) our own proposed model. Previously published research studies have not considered conformity, and have only considered the influence of the nodes when computing the social influence. In our definition, nodes with low in-degree and high out-degree that were connected to nodes with high out-degree and low in-degree had higher centrality. As the main contribution of this research, we propose an algorithm for finding a small subset of nodes in a social network that can have a significant impact on the opinions of other nodes. Experiments on real-world data demonstrate that the proposed algorithm significantly outperforms previously published state-of-the-art methods.
Submission history
From: SeyedHossein Khasteh Dr. [view email][v1] Sun, 28 Aug 2022 07:50:32 UTC (1,838 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.