Computer Science > Information Theory
[Submitted on 28 Aug 2022]
Title:Learning to Optimize: Balancing Two Conflict Metrics in MB-HTS Networks
View PDFAbstract:For multi-beam high throughput (MB-HTS) geostationary (GEO) satellite networks, the congestion appears when user's demands cannot be fully satisfied. This paper boosts the system performance by formulating and solving the power allocation strategies under the congestion control to admit users. A new multi-objective optimization is formulated to balance the sum data throughput and the satisfied user set. After that, we come up with two different solutions, which efficiently tackle the multi-objective maximization problem: The model-based solution utilizes the weighted sum method to enhance the number of demand-satisfied users, whilst the supervised learning solution offers a low-computational complexity design by inheriting optimization structures as continuous mappings. Simulation results verify that our solutions effectively copes with the congestion and outperforms the data throughput demand than the other previous works.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.