Computer Science > Information Theory
[Submitted on 28 Aug 2022]
Title:Multi-Message Private Information Retrieval: A Scalar Linear Solution
View PDFAbstract:In recent years, the Multi-message Private Information Retrieval (MPIR) problem has received significant attention from the research community. In this problem, a user wants to privately retrieve $D$ messages out of $K$ messages whose identical copies are stored on $N$ remote servers, while maximizing the download rate. The MPIR schemes can find applications in many practical scenarios and can serve as an important building block for private computation and private machine learning applications. The existing solutions for MPIR require a large degree of subpacketization, which can result in large overheads, high complexity, and impose constraints on the system parameters. These factors can limit practical applications of the existing solutions. In this paper, we present a methodology for the design of scalar-linear MPIR schemes. Such schemes are easy to implement in practical systems as they do not require partitioning of messages into smaller size sub-messages and do not impose any constraints on the minimum required size of the messages. Focusing on the case of $N=D+1$, we show that when $D$ divides $K$, our scheme achieves the capacity, where the capacity is defined as the maximum achievable download rate. When the divisibility condition does not hold, the performance of our scheme is the same or within a small additive margin compared to the best known scheme that requires a high degree of subpacketization.
Submission history
From: Anoosheh Heidarzadeh [view email][v1] Sun, 28 Aug 2022 15:49:07 UTC (75 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.