Computer Science > Computer Vision and Pattern Recognition
[Submitted on 14 Oct 2022]
Title:Towards Transformer-based Homogenization of Satellite Imagery for Landsat-8 and Sentinel-2
View PDFAbstract:Landsat-8 (NASA) and Sentinel-2 (ESA) are two prominent multi-spectral imaging satellite projects that provide publicly available data. The multi-spectral imaging sensors of the satellites capture images of the earth's surface in the visible and infrared region of the electromagnetic spectrum. Since the majority of the earth's surface is constantly covered with clouds, which are not transparent at these wavelengths, many images do not provide much information. To increase the temporal availability of cloud-free images of a certain area, one can combine the observations from multiple sources. However, the sensors of satellites might differ in their properties, making the images incompatible. This work provides a first glance at the possibility of using a transformer-based model to reduce the spectral and spatial differences between observations from both satellite projects. We compare the results to a model based on a fully convolutional UNet architecture. Somewhat surprisingly, we find that, while deep models outperform classical approaches, the UNet significantly outperforms the transformer in our experiments.
Submission history
From: Konstantin Kirchheim [view email][v1] Fri, 14 Oct 2022 09:13:34 UTC (14,984 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.