Computer Science > Computer Vision and Pattern Recognition
[Submitted on 3 Nov 2022]
Title:Seeing the Unseen: Errors and Bias in Visual Datasets
View PDFAbstract:From face recognition in smartphones to automatic routing on self-driving cars, machine vision algorithms lie in the core of these features. These systems solve image based tasks by identifying and understanding objects, subsequently making decisions from these information. However, errors in datasets are usually induced or even magnified in algorithms, at times resulting in issues such as recognising black people as gorillas and misrepresenting ethnicities in search results. This paper tracks the errors in datasets and their impacts, revealing that a flawed dataset could be a result of limited categories, incomprehensive sourcing and poor classification.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.