Computer Science > Computer Vision and Pattern Recognition
[Submitted on 7 Nov 2022 (v1), last revised 16 Feb 2024 (this version, v3)]
Title:MogaNet: Multi-order Gated Aggregation Network
View PDFAbstract:By contextualizing the kernel as global as possible, Modern ConvNets have shown great potential in computer vision tasks. However, recent progress on \textit{multi-order game-theoretic interaction} within deep neural networks (DNNs) reveals the representation bottleneck of modern ConvNets, where the expressive interactions have not been effectively encoded with the increased kernel size. To tackle this challenge, we propose a new family of modern ConvNets, dubbed MogaNet, for discriminative visual representation learning in pure ConvNet-based models with favorable complexity-performance trade-offs. MogaNet encapsulates conceptually simple yet effective convolutions and gated aggregation into a compact module, where discriminative features are efficiently gathered and contextualized adaptively. MogaNet exhibits great scalability, impressive efficiency of parameters, and competitive performance compared to state-of-the-art ViTs and ConvNets on ImageNet and various downstream vision benchmarks, including COCO object detection, ADE20K semantic segmentation, 2D\&3D human pose estimation, and video prediction. Notably, MogaNet hits 80.0\% and 87.8\% accuracy with 5.2M and 181M parameters on ImageNet-1K, outperforming ParC-Net and ConvNeXt-L, while saving 59\% FLOPs and 17M parameters, respectively. The source code is available at \url{this https URL}.
Submission history
From: Siyuan Li [view email][v1] Mon, 7 Nov 2022 04:31:17 UTC (7,549 KB)
[v2] Mon, 20 Mar 2023 01:44:37 UTC (9,077 KB)
[v3] Fri, 16 Feb 2024 14:17:23 UTC (9,954 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.