Computer Science > Data Structures and Algorithms
[Submitted on 8 Nov 2022]
Title:A Local Search-Based Approach for Set Covering
View PDFAbstract:In the Set Cover problem, we are given a set system with each set having a weight, and we want to find a collection of sets that cover the universe, whilst having low total weight. There are several approaches known (based on greedy approaches, relax-and-round, and dual-fitting) that achieve a $H_k \approx \ln k + O(1)$ approximation for this problem, where the size of each set is bounded by $k$. Moreover, getting a $\ln k - O(\ln \ln k)$ approximation is hard.
Where does the truth lie? Can we close the gap between the upper and lower bounds? An improvement would be particularly interesting for small values of $k$, which are often used in reductions between Set Cover and other combinatorial optimization problems.
We consider a non-oblivious local-search approach: to the best of our knowledge this gives the first $H_k$-approximation for Set Cover using an approach based on local-search. Our proof fits in one page, and gives a integrality gap result as well. Refining our approach by considering larger moves and an optimized potential function gives an $(H_k - \Omega(\log^2 k)/k)$-approximation, improving on the previous bound of $(H_k - \Omega(1/k^8))$ (\emph{R.\ Hassin and A.\ Levin, SICOMP '05}) based on a modified greedy algorithm.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.