Computer Science > Artificial Intelligence
[Submitted on 14 Nov 2022 (v1), last revised 7 May 2023 (this version, v4)]
Title:Knowledge Base Completion using Web-Based Question Answering and Multimodal Fusion
View PDFAbstract:Over the past few years, large knowledge bases have been constructed to store massive amounts of knowledge. However, these knowledge bases are highly incomplete. To solve this problem, we propose a web-based question answering system system with multimodal fusion of unstructured and structured information, to fill in missing information for knowledge bases. To utilize unstructured information from the Web for knowledge base completion, we design a web-based question answering system using multimodal features and question templates to extract missing facts, which can achieve good performance with very few questions. To help improve extraction quality, the question answering system employs structured information from knowledge bases, such as entity types and entity-to-entity relatedness.
Submission history
From: Yang Peng [view email][v1] Mon, 14 Nov 2022 04:02:24 UTC (190 KB)
[v2] Tue, 15 Nov 2022 04:35:17 UTC (193 KB)
[v3] Wed, 12 Apr 2023 05:23:49 UTC (193 KB)
[v4] Sun, 7 May 2023 04:49:49 UTC (193 KB)
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.