Computer Science > Machine Learning
[Submitted on 15 Nov 2022 (v1), last revised 17 Nov 2022 (this version, v2)]
Title:Extending the Neural Additive Model for Survival Analysis with EHR Data
View PDFAbstract:With increasing interest in applying machine learning to develop healthcare solutions, there is a desire to create interpretable deep learning models for survival analysis. In this paper, we extend the Neural Additive Model (NAM) by incorporating pairwise feature interaction networks and equip these models with loss functions that fit both proportional and non-proportional extensions of the Cox model. We show that within this extended framework, we can construct non-proportional hazard models, which we call TimeNAM, that significantly improve performance over the standard NAM model architecture on benchmark survival datasets. We apply these model architectures to data from the Electronic Health Record (EHR) database of Seoul National University Hospital Gangnam Center (SNUHGC) to build an interpretable neural network survival model for gastric cancer prediction. We demonstrate that on both benchmark survival analysis datasets, as well as on our gastric cancer dataset, our model architectures yield performance that matches, or surpasses, the current state-of-the-art black-box methods.
Submission history
From: Matthew Peroni [view email][v1] Tue, 15 Nov 2022 00:37:44 UTC (8,356 KB)
[v2] Thu, 17 Nov 2022 15:47:06 UTC (8,356 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.