Computer Science > Machine Learning
[Submitted on 20 Nov 2022]
Title:On Multi-head Ensemble of Smoothed Classifiers for Certified Robustness
View PDFAbstract:Randomized Smoothing (RS) is a promising technique for certified robustness, and recently in RS the ensemble of multiple deep neural networks (DNNs) has shown state-of-the-art performances. However, such an ensemble brings heavy computation burdens in both training and certification, and yet under-exploits individual DNNs and their mutual effects, as the communication between these classifiers is commonly ignored in optimization. In this work, starting from a single DNN, we augment the network with multiple heads, each of which pertains a classifier for the ensemble. A novel training strategy, namely Self-PAced Circular-TEaching (SPACTE), is proposed accordingly. SPACTE enables a circular communication flow among those augmented heads, i.e., each head teaches its neighbor with the self-paced learning using smoothed losses, which are specifically designed in relation to certified robustness. The deployed multi-head structure and the circular-teaching scheme of SPACTE jointly contribute to diversify and enhance the classifiers in augmented heads for ensemble, leading to even stronger certified robustness than ensembling multiple DNNs (effectiveness) at the cost of much less computational expenses (efficiency), verified by extensive experiments and discussions.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.