Computer Science > Data Structures and Algorithms
[Submitted on 22 Nov 2022 (v1), last revised 30 Jan 2023 (this version, v2)]
Title:Minimum-Cost Temporal Walks under Waiting-Time Constraints in Linear Time
View PDFAbstract:In a temporal graph, each edge is available at specific points in time. Such an availability point is often represented by a ''temporal edge'' that can be traversed from its tail only at a specific departure time, for arriving in its head after a specific travel time. In such a graph, the connectivity from one node to another is naturally captured by the existence of a temporal path where temporal edges can be traversed one after the other. When imposing constraints on how much time it is possible to wait at a node in-between two temporal edges, it then becomes interesting to consider temporal walks where it is allowed to visit several times the same node, possibly at different times. We study the complexity of computing minimum-cost temporal walks from a single source under waiting-time constraints in a temporal graph, and ask under which conditions this problem can be solved in linear time. Our main result is a linear time algorithm when the input temporal graph is given by its (classical) space-time representation. We use an algebraic framework for manipulating abstract costs, enabling the optimization of a large variety of criteria or even combinations of these. It allows to improve previous results for several criteria such as number of edges or overall waiting time even without waiting constraints. It saves a logarithmic factor for all criteria under waiting constraints. Interestingly, we show that a logarithmic factor in the time complexity appears to be necessary with a more basic input consisting of a single ordered list of temporal edges (sorted either by arrival times or departure times). We indeed show equivalence between the space-time representation and a representation with two ordered lists.
Submission history
From: Laurent Viennot [view email] [via CCSD proxy][v1] Tue, 22 Nov 2022 10:11:56 UTC (105 KB)
[v2] Mon, 30 Jan 2023 13:45:53 UTC (110 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.