Computer Science > Computer Vision and Pattern Recognition
[Submitted on 27 Nov 2022]
Title:Semantic-Aware Local-Global Vision Transformer
View PDFAbstract:Vision Transformers have achieved remarkable progresses, among which Swin Transformer has demonstrated the tremendous potential of Transformer for vision tasks. It surmounts the key challenge of high computational complexity by performing local self-attention within shifted windows. In this work we propose the Semantic-Aware Local-Global Vision Transformer (SALG), to further investigate two potential improvements towards Swin Transformer. First, unlike Swin Transformer that performs uniform partition to produce equal size of regular windows for local self-attention, our SALG performs semantic segmentation in an unsupervised way to explore the underlying semantic priors in the image. As a result, each segmented region can correspond to a semantically meaningful part in the image, potentially leading to more effective features within each of segmented regions. Second, instead of only performing local self-attention within local windows as Swin Transformer does, the proposed SALG performs both 1) local intra-region self-attention for learning fine-grained features within each region and 2) global inter-region feature propagation for modeling global dependencies among all regions. Consequently, our model is able to obtain the global view when learning features for each token, which is the essential advantage of Transformer. Owing to the explicit modeling of the semantic priors and the proposed local-global modeling mechanism, our SALG is particularly advantageous for small-scale models when the modeling capacity is not sufficient for other models to learn semantics implicitly. Extensive experiments across various vision tasks demonstrates the merit of our model over other vision Transformers, especially in the small-scale modeling scenarios.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.