Condensed Matter > Materials Science
[Submitted on 23 Nov 2022]
Title:Machine Learning for Screening Large Organic Molecules
View PDFAbstract:Organic semiconductors are promising materials for cheap, scalable and sustainable electronics, light-emitting diodes and photovoltaics. For organic photovoltaic cells, it is a challenge to find compounds with suitable properties in the vast chemical compound space. For example, the ionization energy should fit to the optical spectrum of sun light, and the energy levels must allow efficient charge transport. Here, a machine-learning model is developed for rapidly and accurately estimating the HOMO and LUMO energies of a given molecular structure. It is build upon the SchNet model (Schütt et al. (2018)) and augmented with a `Set2Set' readout module (Vinyals et al. (2016)). The Set2Set module has more expressive power than sum and average aggregation and is more suitable for the complex quantities under consideration. Most previous models have been trained and evaluated on rather small molecules. Therefore, the second contribution is extending the scope of machine-learning methods by adding also larger molecules from other sources and establishing a consistent train/validation/test split. As a third contribution, we make a multitask ansatz to resolve the problem of different sources coming at different levels of theory. All three contributions in conjunction bring the accuracy of the model close to chemical accuracy.
Current browse context:
cond-mat.mtrl-sci
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.