Computer Science > Cryptography and Security
[Submitted on 29 Nov 2022]
Title:Similarity Distribution based Membership Inference Attack on Person Re-identification
View PDFAbstract:While person Re-identification (Re-ID) has progressed rapidly due to its wide real-world applications, it also causes severe risks of leaking personal information from training data. Thus, this paper focuses on quantifying this risk by membership inference (MI) attack. Most of the existing MI attack algorithms focus on classification models, while Re-ID follows a totally different training and inference paradigm. Re-ID is a fine-grained recognition task with complex feature embedding, and model outputs commonly used by existing MI like logits and losses are not accessible during inference. Since Re-ID focuses on modelling the relative relationship between image pairs instead of individual semantics, we conduct a formal and empirical analysis which validates that the distribution shift of the inter-sample similarity between training and test set is a critical criterion for Re-ID membership inference. As a result, we propose a novel membership inference attack method based on the inter-sample similarity distribution. Specifically, a set of anchor images are sampled to represent the similarity distribution conditioned on a target image, and a neural network with a novel anchor selection module is proposed to predict the membership of the target image. Our experiments validate the effectiveness of the proposed approach on both the Re-ID task and conventional classification task.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.