Mathematics > Numerical Analysis
[Submitted on 29 Nov 2022 (v1), last revised 5 Dec 2022 (this version, v3)]
Title:Positivity-preserving and entropy-bounded discontinuous Galerkin method for the chemically reacting, compressible Euler equations. Part I: The one-dimensional case
View PDFAbstract:In this paper, we develop a fully conservative, positivity-preserving, and entropy-bounded discontinuous Galerkin scheme for simulating the chemically reacting, compressible Euler equations with complex thermodynamics. The proposed formulation is an extension of the conservative, high-order numerical method previously developed by Johnson and Kercher [J. Comput. Phys., 423 (2020), 109826] that maintains pressure equilibrium between adjacent elements. In this first part of our two-part paper, we focus on the one-dimensional case. Our methodology is rooted in the minimum entropy principle satisfied by entropy solutions to the multicomponent, compressible Euler equations, which was proved by Gouasmi et al. [ESAIM: Math. Model. Numer. Anal., 54 (2020), 373--389] for nonreacting flows. We first show that the minimum entropy principle holds in the reacting case as well. Next, we introduce the ingredients required for the solution to have nonnegative species concentrations, positive density, positive pressure, and bounded entropy. We also discuss how to retain the aforementioned ability to preserve pressure equilibrium between elements. Operator splitting is employed to handle stiff chemical reactions. To guarantee satisfaction of the minimum entropy principle in the reaction step, we develop an entropy-stable discontinuous Galerkin method based on diagonal-norm summation-by-parts operators for solving ordinary differential equations. The developed formulation is used to compute canonical one-dimensional test cases, namely thermal-bubble advection, multicomponent shock-tube flow, and a moving hydrogen-oxygen detonation wave with detailed chemistry. We find that the enforcement of an entropy bound can considerably reduce the large-scale nonlinear instabilities that emerge when only the positivity property is enforced, to an even greater extent than in the monocomponent, calorically perfect case.
Submission history
From: Eric Ching [view email][v1] Tue, 29 Nov 2022 14:43:22 UTC (4,288 KB)
[v2] Wed, 30 Nov 2022 14:40:53 UTC (4,288 KB)
[v3] Mon, 5 Dec 2022 20:46:27 UTC (4,288 KB)
Current browse context:
math.NA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.