Computer Science > Machine Learning
[Submitted on 1 Dec 2022 (v1), last revised 17 Sep 2023 (this version, v2)]
Title:Decentralized Matrix Factorization with Heterogeneous Differential Privacy
View PDFAbstract:Conventional matrix factorization relies on centralized collection of users' data for recommendation, which might introduce an increased risk of privacy leakage especially when the recommender is untrusted. Existing differentially private matrix factorization methods either assume the recommender is trusted, or can only provide a uniform level of privacy protection for all users and items with untrusted recommender. In this paper, we propose a novel Heterogeneous Differentially Private Matrix Factorization algorithm (denoted as HDPMF) for untrusted recommender. To the best of our knowledge, we are the first to achieve heterogeneous differential privacy for decentralized matrix factorization in untrusted recommender scenario. Specifically, our framework uses modified stretching mechanism with an innovative rescaling scheme to achieve better trade off between privacy and accuracy. Meanwhile, by allocating privacy budget properly, we can capture homogeneous privacy preference within a user/item but heterogeneous privacy preference across different users/items. Theoretical analysis confirms that HDPMF renders rigorous privacy guarantee, and exhaustive experiments demonstrate its superiority especially in strong privacy guarantee, high dimension model and sparse dataset scenario.
Submission history
From: Wentao Hu [view email][v1] Thu, 1 Dec 2022 06:48:18 UTC (138 KB)
[v2] Sun, 17 Sep 2023 03:19:23 UTC (788 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.