Computer Science > Hardware Architecture
[Submitted on 1 Dec 2022]
Title:TCN-CUTIE: A 1036 TOp/s/W, 2.72 uJ/Inference, 12.2 mW All-Digital Ternary Accelerator in 22 nm FDX Technology
View PDFAbstract:Tiny Machine Learning (TinyML) applications impose uJ/Inference constraints, with a maximum power consumption of tens of mW. It is extremely challenging to meet these requirements at a reasonable accuracy level. This work addresses the challenge with a flexible, fully digital Ternary Neural Network (TNN) accelerator in a RISC-V-based System-on-Chip (SoC). Besides supporting Ternary Convolutional Neural Networks, we introduce extensions to the accelerator design that enable the processing of time-dilated Temporal Convolutional Neural Networks (TCNs). The design achieves 5.5 uJ/Inference, 12.2 mW, 8000 Inferences/sec at 0.5 V for a Dynamic Vision Sensor (DVS) based TCN, and an accuracy of 94.5 % and 2.72 uJ/Inference, 12.2 mW, 3200 Inferences/sec at 0.5 V for a non-trivial 9-layer, 96 channels-per-layer convolutional network with CIFAR-10 accuracy of 86 %. The peak energy efficiency is 1036 TOp/s/W, outperforming the state-of-the-art silicon-proven TinyML quantized accelerators by 1.67x while achieving competitive accuracy.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.