Computer Science > Computation and Language
[Submitted on 3 Nov 2022]
Title:Using Large Pre-Trained Language Model to Assist FDA in Premarket Medical Device
View PDFAbstract:This paper proposes a possible method using natural language processing that might assist in the FDA medical device marketing process. Actual device descriptions are taken and matched with the device description in FDA Title 21 of CFR to determine their corresponding device type. Both pre-trained word embeddings such as FastText and large pre-trained sentence embedding models such as sentence transformers are evaluated on their accuracy in characterizing a piece of device description. An experiment is also done to test whether these models can identify the devices wrongly classified in the FDA database. The result shows that sentence transformer with T5 and MPNet and GPT-3 semantic search embedding show high accuracy in identifying the correct classification by narrowing down the correct label to be contained in the first 15 most likely results, as compared to 2585 types of device descriptions that must be manually searched through. On the other hand, all methods demonstrate high accuracy in identifying completely incorrectly labeled devices, but all fail to identify false device classifications that are wrong but closely related to the true label.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.