Mathematics > Numerical Analysis
[Submitted on 6 Dec 2022]
Title:Non-Computability of the Pseudoinverse on Digital Computers
View PDFAbstract:The pseudoinverse of a matrix, a generalized notion of the inverse, is of fundamental importance in linear algebra. However, there does not exist a closed form representation of the pseudoinverse, which can be straightforwardly computed. Therefore, an algorithmic computation is necessary. An algorithmic computation can only be evaluated by also considering the underlying hardware, typically digital hardware, which is responsible for performing the actual computations step by step. In this paper, we analyze if and to what degree the pseudoinverse actually can be computed on digital hardware platforms modeled as Turing machines. For this, we utilize the notion of an effective algorithm which describes a provably correct computation: upon an input of any error parameter, the algorithm provides an approximation within the given error bound with respect to the unknown solution. We prove that an effective algorithm for computing the pseudoinverse of any matrix can not exist on a Turing machine, although provably correct algorithms do exist for specific classes of matrices. Even more, our results introduce a lower bound on the accuracy that can be obtained algorithmically when computing the pseudoinverse on Turing machines.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.