Computer Science > Robotics
[Submitted on 10 Dec 2022]
Title:Exploiting the Power of Human-Robot Collaboration: Coupling and Scale Effects in Bricklaying
View PDFAbstract:As an important contributor to GDP growth, the construction industry is suffering from labor shortage due to population ageing, COVID-19 pandemic, and harsh environments. Considering the complexity and dynamics of construction environment, it is still challenging to develop fully automated robots. For a long time in the future, workers and robots will coexist and collaborate with each other to build or maintain a facility efficiently. As an emerging field, human-robot collaboration (HRC) still faces various open problems. To this end, this pioneer research introduces an agent-based modeling approach to investigate the coupling effect and scale effect of HRC in the bricklaying process. With multiple experiments based on simulation, the dynamic and complex nature of HRC is illustrated in two folds: 1) agents in HRC are interdependent due to human factors of workers, features of robots, and their collaboration behaviors; 2) different parameters of HRC are correlated and have significant impacts on construction productivity (CP). Accidentally and interestingly, it is discovered that HRC has a scale effect on CP, which means increasing the number of collaborated human-robot teams will lead to higher CP even if the human-robot ratio keeps unchanged. Overall, it is argued that more investigations in HRC are needed for efficient construction, occupational safety, etc.; and this research can be taken as a stepstone for developing and evaluating new robots, optimizing HRC processes, and even training future industrial workers in the construction industry.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.