Computer Science > Artificial Intelligence
[Submitted on 20 Dec 2022 (v1), last revised 10 Jan 2023 (this version, v2)]
Title:A deep learning Attention model to solve the Vehicle Routing Problem and the Pick-up and Delivery Problem with Time Windows
View PDFAbstract:SNCF, the French public train company, is experimenting to develop new types of transportation services by tackling vehicle routing problems. While many deep learning models have been used to tackle efficiently vehicle routing problems, it is difficult to take into account time related constraints. In this paper, we solve the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW) and the Capacitated Pickup and Delivery Problem with Time Windows (CPDPTW) with a constructive iterative Deep Learning algorithm. We use an Attention Encoder-Decoder structure and design a novel insertion heuristic for the feasibility check of the CPDPTW. Our models yields results that are better than best known learning solutions on the CVRPTW. We show the feasibility of deep learning techniques for solving the CPDPTW but witness the limitations of our iterative approach in terms of computational complexity.
Submission history
From: Baptiste Rabecq [view email] [via CCSD proxy][v1] Tue, 20 Dec 2022 16:25:55 UTC (707 KB)
[v2] Tue, 10 Jan 2023 15:38:35 UTC (717 KB)
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.