Computer Science > Social and Information Networks
[Submitted on 25 Dec 2022]
Title:Search, Structure, and Sentiment: A Comparative Analysis of Network Opinion in Different Query Types on Twitter
View PDFAbstract:Understanding the relationship between structure and sentiment is essential in highlighting future operations with online social networks. More specifically, within popular conversation on Twitter. This paper provides a development on the relationship between the two variables: structure, defined as the composition of a directed network, and sentiment, a quantified value of the positive/negative connotations of a conversation. We highlight thread sentiment to be inversely proportional to the strength and connectivity of a network. The second portion of this paper highlights differences in query types, specifically how the aforementioned behavior differs within four key query types. This paper focuses on topical, event-based, geographic, and individual queries as orientations which have differing behavior. Using cross-query analysis, we see that the relationship between structure and sentiment, though still inversely proportional, differs greatly across query types. We find this relationship to be the most clear within the individual queries and the least prevalent within the event-based queries. This paper provides a sociological progression in our understanding of opinion and networks, while providing a methodological advancement for future studies on similar subjects.
Current browse context:
cs.SI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.