Statistics > Machine Learning
[Submitted on 18 Jan 2023 (v1), last revised 30 May 2023 (this version, v5)]
Title:Learning Interpolations between Boltzmann Densities
View PDFAbstract:We introduce a training objective for continuous normalizing flows that can be used in the absence of samples but in the presence of an energy function. Our method relies on either a prescribed or a learnt interpolation $f_t$ of energy functions between the target energy $f_1$ and the energy function of a generalized Gaussian $f_0(x) = ||x/\sigma||_p^p$. The interpolation of energy functions induces an interpolation of Boltzmann densities $p_t \propto e^{-f_t}$ and we aim to find a time-dependent vector field $V_t$ that transports samples along the family $p_t$ of densities. The condition of transporting samples along the family $p_t$ is equivalent to satisfying the continuity equation with $V_t$ and $p_t = Z_t^{-1}e^{-f_t}$. Consequently, we optimize $V_t$ and $f_t$ to satisfy this partial differential equation. We experimentally compare the proposed training objective to the reverse KL-divergence on Gaussian mixtures and on the Boltzmann density of a quantum mechanical particle in a double-well potential.
Submission history
From: Bálint Máté [view email][v1] Wed, 18 Jan 2023 09:32:33 UTC (2,428 KB)
[v2] Fri, 27 Jan 2023 07:09:30 UTC (2,207 KB)
[v3] Mon, 17 Apr 2023 09:42:34 UTC (2,221 KB)
[v4] Mon, 29 May 2023 09:19:48 UTC (3,041 KB)
[v5] Tue, 30 May 2023 07:40:03 UTC (3,041 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.